EPH - International Journal of Mathematics and Statistics https://ephjournal.org/index.php/ms <p><strong><span id="cell-5-name" class="gridCellContainer"><span class="label">EPH - International Journal of Mathematics and Statistics (ISSN: 2208-2212)&nbsp;</span></span></strong> publishes a wide range of high quality research articles in the field (but not limited to) given below: mathematics, applied mathematics, applied commutative algebra and algebraic geometry, mathematical biology, physics and engineering, theoretical bioinformatics, experimental mathematics, theoretical computer science, numerical computation etc. <br><span style="font-size: 1.5em;"><strong> <span style="text-shadow: #ff6600 0px 0px 3px;">Current Impact Factor: 2.387</span></strong></span></p> en-US <ul> <li>All contributor(s) agree to transfer the copyright of this article to <strong>EPH Journal.</strong></li> <li><strong>EPH Journal</strong> will have all the rights to distribute, share, sell, modify this research article with proper reference of the contributors.&nbsp;</li> <li><strong>EPH Journal</strong> will have the right to edit or completely remove the published article on any misconduct happening.</li> </ul> editor@ephjournal.org (Naveen Malik) info@ephjournal.org (Naeem Akhtar) Wed, 15 Dec 2021 07:19:21 +0000 OJS 3.3.0.7 http://blogs.law.harvard.edu/tech/rss 60 Parametrization of algebraic points of low degrees on the affine curve y^{2}= x^{5}+144^{2} https://ephjournal.org/index.php/ms/article/view/1865 <pre style="-qt-block-indent: 0; text-indent: 0px; margin: 0px;"><span style="color: #000000;">In this </span><span style="text-decoration: underline; color: #000000;">work</span><span style="color: #000000;">, </span><span style="text-decoration: underline; color: #000000;">we</span> <span style="text-decoration: underline; color: #000000;">determine</span><span style="color: #000000;"> a </span><span style="text-decoration: underline; color: #000000;">parametrization</span> <span style="text-decoration: underline; color: #000000;">of</span> <span style="text-decoration: underline; color: #000000;">algebraic</span><span style="color: #000000;"> points </span><span style="text-decoration: underline; color: #000000;">of</span><span style="color: #000000;"> degrees </span><span style="text-decoration: underline; color: #000000;">at</span> <span style="text-decoration: underline; color: #000000;">most</span> <span style="color: #008000;">3</span> <span style="text-decoration: underline; color: #000000;">over</span> <span style="color: #008000;">Q</span><span style="color: #000000;"> on curve <br></span><span style="color: #008000;">C</span> <span style="text-decoration: underline; color: #000000;">of</span><span style="color: #000000;"> affine equation </span><span style="color: #008000;">y^{2}= x^{5}+20736</span><span style="color: #000000;">. </span><span style="text-decoration: underline; color: #000000;">This</span> <span style="text-decoration: underline; color: #000000;">result</span> <span style="text-decoration: underline; color: #000000;">extends</span><span style="color: #000000;"> a </span><span style="text-decoration: underline; color: #000000;">result</span> <span style="text-decoration: underline; color: #000000;">of</span><span style="color: #000000;"> S. </span><span style="text-decoration: underline; color: #000000;">Siksek</span><span style="color: #000000;"> and M. </span><span style="text-decoration: underline; color: #000000;">Stoll</span> <span style="text-decoration: underline; color: #000000;">who</span> <span style="text-decoration: underline; color: #000000;">described</span><span style="color: #000000;"> <br>in </span><span style="color: #008000;">[ 4] </span> <span style="text-decoration: underline; color: #000000;">the</span><span style="color: #000000;"> set </span><span style="text-decoration: underline; color: #000000;">of</span> <span style="color: #008000;">Q</span><span style="color: #000000;">-rational points on this curve.</span></pre> El Hadji SOW, Pape Modou SARR, OUMAR SALL Copyright (c) 2021 EPH - International Journal of Mathematics and Statistics (ISSN: 2208-2212) http://creativecommons.org/licenses/by-nc-nd/4.0 https://ephjournal.org/index.php/ms/article/view/1865 Thu, 30 Dec 2021 00:00:00 +0000 Likelihood Inference for Discrete Weibull Data with Left Truncation and Right Censoring https://ephjournal.org/index.php/ms/article/view/1847 <p><span class="fontstyle0">The discrete Weibull distribution is a very popular distribution for modeling discrete lifetime data, and it is obtained by discretizing Weibull distribution. Left truncation and right censoring are often observed in lifetime data. Here, the EM algorithm is applied to estimate the model parameters of the discrete Weibull distribution fitted to data containing left truncation and right censoring. The maximization part of the EM algorithm is carried out using the ECM algorithm. The discrete Weibull distribution is also fitted using the Newton-Raphson(NR) method. The asymptotic variance-covariance matrix of the MLEs under the EM framework is obtained through the missing information principle, and asymptotic confidence intervals for the parameters are then constructed.</span> </p> Chaobing He Copyright (c) 2021 EPH - International Journal of Mathematics and Statistics (ISSN: 2208-2212) http://creativecommons.org/licenses/by-nc-nd/4.0 https://ephjournal.org/index.php/ms/article/view/1847 Wed, 15 Dec 2021 00:00:00 +0000