Parametrization of algebraic points of low degrees on the affine curve y^{2}= x^{5}+144^{2}
DOI:
https://doi.org/10.53555/ephms.v7i12.1865Keywords:
Planes curves, Degree of algebraic points, Rational points, Algebraic extensions, JacobianAbstract
In this work, we determine a parametrization of algebraic points of degrees at most 3 over Q on curveC of affine equation y^{2}= x^{5}+20736. This result extends a result of S. Siksek and M. Stoll who described
in [ 4] the set of Q-rational points on this curve.
Downloads
References
P. A. Griffiths, Introduction to algebraic curves , Translations of mathematical monographs volume 76. American Mathematical Society, Providence (1989).
O. Sall, Points algébriques sur certains quotients de courbes de Fermat, C. R. Acad. Sci. Paris Ser. I 336 (2003) 117-120.
O. Sall, M. Fall, C. M. Coly, Points algébriques de degré donné sur la courbe d'équation affine y^2 = x^5 + 1, International Journal Of Development Research Vol. 06, Issue, 11, pp. 10295-10300, November, 2016.
S. Siksek, M. Stoll, Partial descent on hyperelliptic curves and the generalized Fermat equation $x^{3} + y^{4} + z^{5} = 0$, Bull. London Math. Soc. 44 (2012) 151-166.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 EPH - International Journal of Mathematics and Statistics (ISSN: 2208-2212)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
- All contributor(s) agree to transfer the copyright of this article to EPH Journal.
- EPH Journal will have all the rights to distribute, share, sell, modify this research article with proper reference of the contributors.
- EPH Journal will have the right to edit or completely remove the published article on any misconduct happening.